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Abstract .  The critical propertie of the perimeters (or 'hulls') of antipercolation 
clusters are studied in twodimensions by  Monte Carlo simulations on the triangular 
lattice. Two different types of hulls are constructed with the help of two kinetic walk  
algorithms. For the standard hull, we very accurately determine the size distlibution 
exponent 7' = 2.1425 f 0.0003, as well BS the fractal dimension d s  = 1.750 i 0.001. 
The corresponding exponents for regular percolation hulls (15/7 and 714 respectively) 
IIP u.ihhin thn P-~I h.7. .4 n,.r - a c , . l + =  <,v m m + ; n ~ v c n l s + i n n  FA- rhn m A . . m r l  h 7 . 1 1  w m  

obtain the estimate d p  = 1.334 f 0.004 for the fractal dimension, a result which is 
again close to that found for regular percolation. 

-- ... " ".._" ..-. l-"-.-". l..".r"."-. .-. 

1. Introduction 

Antipercolation (or AB percolation) is a variant of regular percolation in which the 
connectivity rules are modified (Mai and Halley 1980, SevSek e t  al 1983). In both 
cases, the lattice sites are coloured black with probability p or white with probability 
1-p, but in antipercolation two first-neighbour sites are connected only if their colours 
are different. Antipercolation clusters are therefore made up of alternating black and 
white sites and they are surrounded by a double layer of sites which all have the 

(Wu and Bradley 199la). In two dimensions ( X I ) ,  the triangular lattice is the only 
simple planar lattice where a transition occurs (Appel and Wierman 1987, Wierman 
and Appel 1987). Numerical studies of this transition indicate that the bulk critical 
exponents are the same as for regular percolation (SevSek e l  al 1983, Nakanishi 1987, 
Wu and Bradley 199lb). 

The interest in the structure of percolation clusters has recently broadened to 
include the cluster perimeter (or 'hull') in t w o  dimensions (for a review, see Ziff (1989)) 
as well as in three dimensions (Strenski el a l  1991, Bradley e t  al  1991). The relation 

samx d o u r .  A_pp!ic.a.t,ions of t,he mode! include t,he propagat,ion of venerea! epidemics 

between the fractal dimension ds of the hull and the correlation length exponent U for 

was subsequently supported by studies of diffusion fronts (Bunde and Gouyet 1985) 
percoia&n ciusiers in .iD was first by Sapova] (;ss:), This eonJrjeciure 
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and was ultimately proven to be exact by Salenr and Duplantier (1987). Additional 
scaling relations have been established which interrelate the other hull critical expo- 
nents (Ziff 1986, Strenski el 01 1991, Bradley el a1 1991). An analogy between the hull 
and a self-avoiding walk at the 8' point was drawn (Coniglio et al 1987, Duplantier 
and Saleur 1987), and it was argued that the reduced hull (Grossman and Aharony 
1986) must have a fractal dimension dp  = 4 ,  since the unstable 8' tricritical point is 
affected by the resulting restrictions on the hull configurations (Salem and Duplantier 
1987). 

makes use of the equivalence between percola- 
tion and the q = 1 Potts model. For antipercolation, mappings to modified q = 1 Potts 
models have been proposed (Turban 1983, Halley 1983, Wu and Bradley 1991a), hut 
the Coulomb gas mapping used in the case of percolation cannot he  readily extended 
to these Potts models. As a result, there are no exact results available for antipercw 
lation. Moreover, the hull exponents have never been estimated for this model. 

The surface of an antipercolation cluster has some unusual features as compared 
to regular percolation. For instance, it is possible that first-neighhour sites belong to 
distinct clusters, even if they are of the same colour. This is in contrast with regular 
percolation where two clusters cannot he closer than a second-neighhour distance. 
Moreover, since the sites a t  the perimeter of an antipercolation cluster all have the 
same colour, they are not directly connected to each other. They are instead connected 
by internal sites of the opposite colour. It seemed worthwhile to us to  test whether 
these unusual features affect the critical properties of the hull. 

J-M Debiem and R M Bmdley 

The derivation of the result ds = 

2. Algorithm 

In 2D, it is well known that hulls of percolation clusters can be constructed by a kinetic 
random walk which follows a set of appropriate rules (Ziff el al  1984, Weinrib and 
Trugman 1985, Gouyet 1988). These rules must be modified, according to the nature 
of the underlying lattice and to the specific case considered (e.g., bond percolation, 
site percolation, etc). For antipercolation, we start with a triangular lattice which 
is completely uncoloured, except for a pair of white first-neighbour sites. The walk 
associated with the hull is constructed on the honeycomb lattice, the dual to the 
original lattice. Initially, the walk consists of a single step bisecting the bond between 
the two white sites and is oriented in one of the two possible directions. The closest 
site of the triangular lattice in the forward direction of the walk is called the target site 
(figure l ( ~ ) ) .  At each Monte Carlo step, the occupation of the target site is checked. If 
this site is uncoloured, it is coloured black with probability p or white with probability 
1 - p. A previously coloured target site is unaltered. If the target site is white, the 
walk turns right through a white-white bond (figure l (b) ) .  Conversely, if it is black, 
the walk backtracks since it must not cross a white-black bond (figure l (c)) .  This 
procedure is repeated until the walk closes or until the number of steps is greater than 
a given cut-off value (see figure 2(a)). With the above rules, the cluster always lies on 
the right-hand side of the walker, so that a walk closing clockwise (anticlockwise) is 
an external (internal) hull. This type of walk is not self-avoiding since it often has to 
backtrack. However, there is a type of steric hindrance in the model since each bond 
can he visited a maximum of two times. 

In practice, the simulations were performed on a 65 536 x 65 536 lattice, using a 
data blocking scheme (Ziff el a l  1984). The cut-off was usually set to 220 - 1, hut it 
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Figure 1. The kinetic walk algorithm used to construct the standard hull. (a) An 
elementary step of the kinetic walk ( I )  bisects two white sites (0) of the trianpllar 
lattiae and points towards the target site (8). (b)  If the target site is white, the 
walk t u n a  right. (c) If the target site is black, the walk backtracks. 

101 f b l  

Figure 2. The extemal perimeter of an antipercolation cluster on the triangular 
lattia. (a) The standard hull contains 24722 steps. (b)  The corresponding reduced 
hull contains only 3416 steps. 

was occasionally increased to 2** - 1. All the walks generated during the simulations 
remained within the lattice boundaries so that no finite-size bias can he attributed to 
the lattice dimensions. 

3. Results for the standard hull 

We calculated both the number N,,,(s) of external and the number Ni,,(s) of internal 
perimeters which closed after exactly s steps. These numbers are very sensitive to the 
value of the probability p: below the percolation threshold pc there are more external 
perimeters than internal ones, while the opposite is the case above p,, I t  was first 
suggested by Ziff (1986) that, at  p = p c ,  the ratio N i c ! ( s ) / N c x t ( s )  tends to one as s 
tends to infinity. To illustrate this point, we assume the usual scaling form (Stauffer 
1979, Ziff 1986) 

N i ( S )  - s1-+f:(lp-p~ls”) (1) 
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where the superscript 6 refers to the regions above (6 = +) and below (6 = -) p ,  and 
the subscript e distinguishes internal (a = int) from external (e = ext) perimeters. 
For a given number of steps s, the ratio of internal to  external perimeters is given by 
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where I I Ip - p,Iso'. Clearly R+(I)  2 1, whereas R-( z )  5 1. At p = p c ,  we 
have N: = N ;  and, as a consequence, f:(O) = f;(O), so that finally R+(O) = 
R-(0) = 1. We have considered here the general case where fkt # f&f. However, for 
site percolation on the triangular lattice, the situation is naturally symmetrical about 
p ,  = $, and so fin, and fe;{ coincide. Moreover, since there is numerical evidence that 
this equality is also valid for site percolation on the square lattice (Ziff et a/  1984), we 
beiieve this couid be a generai resuit. 

To avoid large fluctuations as well as finite-size effects, we calculated the ratio 

6 

with the summation limits s1 = 216 and s2 = Z2' - 1 (table l),  rather than computing 
R6. The critical probability p ,  is given by the value of p a t  which p 6 ( p )  = 1 and, 
from table 1, we obtain the estimate p ,  = 0.21565 f 0.00003. The error here is 
purely statistical (Ziff 1986). This result is slightly larger than a previous estimate, 
p ,  = 0.21524 f 0.00034 (Nakanishi 1987). Our estimate of p ,  is probably slightly 
below the exact value, since when we increased the cut-off from Z2' - 1 to Z2' - 1 
steps, ~(0.21565) decreased from 0.98 to 0.95. Using our assumption that fkt = fz, 
equation (3) gives 

P + ( P ,  + AP) = ~ / P - ( P ,  - AP) (4) 

for small A p  > 0. Within the error bars, this last equality agrees with our numerical 
results (table 1). This lends additional support to the idea that the scaling functions 
are symmetrical about p , .  

Table 1. The ratio p of the number of internal to external perimeters for different p 
values. We summed all the perimeters with a number of steps in lhe range [216,220]. 
Altogether, 20000 perimeters (ofall sizes) were constructed for each of the p values, 
except for p = 0.21565. where this amount was increased to 150000. The errom 

to unity gives an mcuate estimate of the critical probability. 

...-.._I I.--- :.. ..-:-:- T L ^  - " 1 , K  nc T,.- ."Li?l. " :- ,he ,-lnsn., quvrru 11c,r a'= s b a L I > I . L . s .  I., ".a&",. l l l C  lnlYC - ".L.""y l". .Ill.-. 1" 1.1" -.-I"-" 

P P 

0.2154 0.62 f 0.05 
0.2155 0.75 f 0.06 
0.2156 0.95 +0.07 
0.21565 0.98 f 0.03 
0.2157 1.1OfO.09 
0.2158 1.31 hO.10 
0.2159 1.58 f 0.12 
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According to equation (l), the fraction F ( s )  of perimeters which are longer than 
s steps must be proportional to s2--“ at p,. To determine the distribution exponent 
T’, we made a log-log plot of F ( s )  against s (figure 3). A linear fit for s in the range 
[Z’, ZZ0] gives 7’ = 2.1425& 0.0003, in excellent agreement with the value r‘ = 15/7 E 

2.1428 ... which is believed to be exact for regular percolation (Ziff 1986, Saleur and 
Duplantier 1987). We also estimated the fractal dimension ds of the perimeters at 
p = pc = 0.21565. We calculated the average square distance R2(s )  between two 
sites on the hull separated by s = 2b,2’,...,219 steps. The data were averaged over 
the 6930 perimeters which remained open after ZZo - 1 steps (out of a total of 50000 
perimeters). The plot of log, s as a function of log, R gives a very straight line, with 
slope d: = 1.750f0.0001, fors  in the range [Z9, Z”] (figure 4). Here again our estimate 
is, within the error bars, equal to its exact counterpart for regular percolation, d; = $ 
(Sapoval et  al 1985, Saleur and Duplantier 1987). 

c 
m 

-1 .5 . -  

-2.0 
- 

10% 5 

0 5 10 15 20 

-0.5 
* * .  

Figure 3. log, F as a function with crosse. 
The slope given by a linear least squares fit for s > 2’ (full line) is equal to -0.1425h 
o.ooa3. 

S. The data points are indicate 

I 
8 T  * 
6-- I *  

4 5 6 7 8 9 10 11 

Figure 4. logz 8 as a function of log, R.  The full line is a linear fit  of the datapoint. 
with s in therange [ZS,Z1@].  Its slope gives the fractaldimension df = 1.750&0.0001. 
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Finally, we tested the scaling behaviour of the perimeter distribution around p ,  
by calculating the scaling functions defined in equation ( l ) ,  

f'$) = sr'-1N:(s).  (5) 

For regular percolation, the exponent U' is connected to the correlation-length expo- 
nent v by 

U' = 1/(1+ v) (6) 

and is equal to $ in 2D (Ziff 1986). If we assume this relation to be valid for antiper- 
colation as well, then U' must be  unchanged, since U has the same value in both cases 
(SevBek el a/ 1983). We thus used the value U' = $ to compute the scaling functions 
given in equation ( 5 ) .  The excellent collapse of the numerical data which is observed 
in figure 5 justifies this choice a posterion'. This plot also confirms the symmetry of 
the scaling functions, since the data points for fkt and f&f fall on the same curve. 
We also observe that the two scaling functions have the same asymptotic behaviour 
for z - 0 and z -3 CO, but that  they differ substantially in the intermediate region. 
Finally, both functions tend to the same constant value when z - 0, as expected. 

4. Results for the reduced hull 

It has been shown recently that for continuum percolation in ID, the standard hull 
with fractal dimension ds = eventually crosses over a reduced hull with fractal 
dimension d: = $ if the characteristic length used to construct the hull is increased 
(Rosso 1989, Kolb 1990). This confirms and generalizes the results obtained for regular 
percolation on the square and triangular lattices (Grossman and Abarony 1986, 1987, 
Freund and Grassberger 1991). I t  is also tempting to test this prediction in the case of 
antipercolation. To obtain the reduced hull, we first used the algorithm described in 
section 2 to construct an ezternalstandard hull (internal hulls were discarded). Then, 
we discarded all but the outermost part of the standard hull by deleting all the loops 
which were connecied io it by twice-occupied bonds (see figure 2). This ws achieved 
with the help of a new type of kinetic walk which was started at  an arbitrary point 
along the external edge of the hull. The rules for this new walk are similar t o  those 
given in section 2 (figure l ) ,  hut,  since the new walk traces out the outermost part 
of an external perimeter, the target site is always white. The rules given in figure 1 
must be modified as follows: if the target site has a black first-neighbour then turn 
left; otherwise turn right. With these new rules, the walk is no longer allowed to cut 
a bond between two white sites belonging t o  the antipercolation cluster. For p = p c 3  
we constructed a total of 54700 reduced hulls. We calculated their radius of gyration 
as a function of the number of steps s and binned the data over increasing ranges of s 
values. Let R g ( s i )  be the average radiuwfor all the hulls with s in the range [s i ,  a s i ] ,  
where si = 2(i+4)/2 ( i  = 1 , 2 ,  ...). In figure 6 ,  a log-log plot of si as afunction of Rg(s i )  
is &own, Since tho cut-& 3s imposed cpofi the arigina! standard h~!!s rather than 
on the corresponding reduced hulls, the data for large si values are biased. The two 
points furthest to the right in figure 6 are affected most by this bias and have therefore 
been discarded in the following analysis. The reduced hulls are much smaller than the 
standard ones, and so the log-log plot in figure 6 shows a systematic curvature. A 
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Figure 5. The scaling functions for the size distribution of perimeters longer than 
62 steps. (a) The function fe;, is plotted for p = 0.170 (+), 0.185 (O), 0.195 (*), 
0.205 ( x )  and 0.213 ( 0 ) .  The fundion fz, is plotted for p = 0.2158 (U) and 0.2160 
(t). ( 6 )  The functions f;, and fA,. The p values and the symbols used are the same 
arin (a). 

finite-size scaling analysis is thus necessary to determine dp accurately. We therefore 
calculated the standard finite-size estimators 

and plotted them as a function of l /Rg(si) .  After a crossover regime, the estimators 
for the largest hulls are well fit by a straight line, indicating that the corrections to  
scaling have a simple form (figure 7). A linear extrapolation to l/Rg = 0 gives the 
estimate df" = 1.334 f 0.004, in excellent agreement with the value 2 obtained for 
regular percolation. 

5 .  Summary 

We have constructed the standard hulls of autipercolation clusters on the triangular 
lattice. We have shown that the ratio p of the number of internal hulls lo the number 
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Y 
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0 2 4 6 8 10 

10% R g i s , 1  

Figure 6. log, si = a function of logz R g ( s , ) .  A curvature is visible, even for large 
* i  vduea. 

+ 
+ + 

+ 
1 . 3 8  

.~ - 
P- 

a 1.34  

+ 

1 . 3 2  1' 
1 3 0  I 

0 0.02 0.04 0.06 0.08 0.10 

l / R g  I s , )  

Figure i. The finiie-size esiimaior @jij pioited as a iunciion oi the inverse oi ihe 
average radius of gyration l / % ( s i )  (crosses). A crossover regime is obrervedfor the 
small hulls. The full line is a linear fit for 3, > 90 giving d r  = 1.333 f 0.004 at the 
intercept. 

of external hulls must he equal t o  one when p = p,. Using this criterion, we obtained 
the estimate pe = 0.21565 f 0.00003. Our numerical results show that the scaling 
function for the external hulls below threshold is the same as the scaling function 
for the internal hulls above threshold. We computed the distribution exponent, r' = 
2.1425 & 0.0003, as well as the fractal dimension of the hulls, df = 1.750 f 0.001, 
Finally, we argued that the critical exponent U' might be the same as for regular 
peerco!atiofi. This w s  cnf i f i r~ed  "unerica!!y hy corr?piitifig t,he scaling fufictiogs. 
We also constructed the reduced hulls for this problem and determined their fractal 
dimension, d? = 1.334 f 0.004. All these results strongly suggest that  the surface 
critical exponents of antipercolation and percolation clusters are equal, as is the case 
for the bulk exponents. 
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